Identifying the Multi-Scale Influences of Climate Factors on Runoff Changes in a Typical Karst Watershed Using Wavelet Analysis

Author:

Wu Luhua,Wang Shijie,Bai XiaoyongORCID,Chen Fei,Li Chaojun,Ran Chen,Zhang Sirui

Abstract

Identifying the impacts of climatic factors on runoff change has become a central topic in climate and hydrology research. This issue, however, has received minimal attention in karst watersheds worldwide. Multi-resolution analysis (MRA), continuous wavelet transform (CWT), cross wavelet transform (XWT) and wavelet transform coherence (WTC) are used to study the teleconnection in time and frequency between climate change and hydrological processes in a typical karst watershed at different time scales. The main results are: (1) All climatic factors exhibit a main cycle at 12-month time scales with runoff changes, but the main periodic bandwidth of rainfall on runoff changes is much wider than that of temperature and evaporation, indicating that rainfall is the main factor affecting runoff changes. (2) In other cycles, the impact of rainfall on runoff changes is the interlacing phenomena with positive and negative, but the impact of temperature and evaporation on runoff change is mainly negative. (3) The response of runoff to rainfall is in time in the high-energy region and the low-energy significant-correlation region and has shown a positive correlation with a smaller phase angle, but it is slightly lagged at 16-month time scales. Moreover, the runoff change lags behind temperature and evaporation for 1–2 months in those regions. (4) It has been found that there is a strong effect of rainfall over runoff, but a lesser effect of temperature and evaporation over runoff. The study sheds light on the main teleconnections between rainfall, evapotranspiration and surface runoff, which in turn might help to attain the better management of water resources in typical karst watersheds.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3