Appraisal of long-term responsiveness of normalized difference vegetation index to climatic factors using multiscale time–frequency decomposition in an arid environment

Author:

Sonia ,Sunita ,Ghosh Tathagata,Amari Abdelfattah,Yadav Virendra Kumar,Osman Haitham,Sahoo Dipak Kumar,Patel Ashish

Abstract

An arid climate is a unique condition that has a significant impact on the growth of crops and natural vegetation. The normalized difference vegetation index (NDVI) is a crucial remotely sensed measurement of greenness due to its strong correlation with crop and vegetation growth and productivity. In the present study, the spatiotemporal dynamics of NDVI were analyzed from 2000 to 2021 in the segment of the arid western plain zone of Rajasthan, India. NDVI time-series data, as well as data related to climatic factors, viz., precipitation, soil moisture, evapotranspiration, and 2-m air temperature, were collected from Giovanni, the Goddard Earth Science dataset. The Mann–Kendall (MK) trend test and Sen’s slope depicted the long-term continuous time–frequency trend, while Karl Pearson’s correlation analysis depicted the significant relationship between all the factors except 2-m air temperature. The seasonal and mean monthly results of all the factors except 2-m air temperature showed considerable coherence with NDVI. The multiscale time–frequency decomposition or wavelet analysis depicted the fifth to the seventh month and the ninth to the 15th month of the cycle, showing the significance of the cropping pattern and the natural vegetation growth cycle. The cross-wavelet analysis further depicted important coherence, leading, and lagging phases among climatic factors and NDVI. Our research provided significant insights into the long-term variability and coherence of various climatic factors with NDVI that are applicable on regional and global scales.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3