Could Purposefully Engineered Native Grassland Gardens Enhance Urban Insect Biodiversity?

Author:

Breed Christina A.ORCID,Morelli Agata,Pirk Christian W. W.,Sole Catherine L.,Du Toit Marié J.ORCID,Cilliers Sarel S.

Abstract

Progress is required in response to how cities can support greater biodiversity. This calls for more research on how landscape designers can actively shape urban ecologies to deliver context-specific empirical bases for green space intervention decisions. Design experiments offer opportunities for implemented projects within real-world settings to serve as learning sites. This paper explores preliminary ecological outcomes from a multidisciplinary team on whether purposefully engineered native grassland gardens provide more habitat functions for insects than mainstream gardens in the City of Tshwane, South Africa. Six different sites were sampled: two recently installed native grassland garden interventions (young native), two contemporary non-native control gardens (young non-native) on the same premises and of the same ages as the interventions, one remnant of a more pristine native grassland reference area (old native), and one long-established, non-native reference garden (old non-native). Plant and insect diversity were sampled over one year. The short-term findings suggest that higher plant beta diversity (species turnover indicating heterogeneity in a site) supports greater insect richness and evenness in richness. Garden size, age, and connectivity were not clear factors mediating urban habitat enhancement. Based on the preliminary results, the researchers recommend high native grassland species composition and diversity, avoiding individual species dominance, but increasing beta diversity and functional types when selecting garden plants for urban insect biodiversity conservation in grassland biomes.

Funder

National Research Foundation

University of Pretoria

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3