The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments

Author:

Sinčić MarkoORCID,Bernat Gazibara SanjaORCID,Krkač MartinORCID,Lukačić HrvojeORCID,Mihalić Arbanas SnježanaORCID

Abstract

The objective of the study is to show that landslide conditioning factors derived from different source data give significantly different relative influences on the weight factors derived with statistical models for landslide susceptibility modelling and risk analysis. The analysis of the input data for large-scale landslide hazard assessment was performed on a study area (20.2 km2) in Hrvatsko Zagorje (Croatia, Europe), an area highly susceptible to sliding with limited geoinformation data, including landslide data. The main advantage of remote sensing technique (i.e., LiDAR, Light Detection and Ranging) data and orthophoto images is that they enable 3D surface models with high precision and spatial resolution that can be used for deriving all input data needed for landslide hazard assessment. The visual interpretation of LiDAR DTM (Digital Terrain Model) morphometric derivatives resulted in a detailed and complete landslide inventory map, which consists of 912 identified and mapped landslides, ranging in size from 3.3 to 13,779 m2. This inventory was used for quantitative analysis of 16 input data layers from 11 different sources to analyse landslide presence in factor classes and thus comparing landslide conditioning factors from available small-scale data with high-resolution LiDAR data and orthophoto images, pointing out the negative influence of small-scale source data. Therefore, it can be concluded that small-scale landslide factor maps derived from publicly available sources should not be used for large-scale analyses because they will result in incorrect assumptions about conditioning factors compared with LiDAR DTM derivative factor maps. Furthermore, high-resolution LiDAR DTM and orthophoto images are optimal input data because they enable derivation of the most commonly used landslide conditioning factors for susceptibility modelling and detailed datasets about elements at risk (i.e., buildings and traffic infrastructure data layers).

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference72 articles.

1. Landslide Susceptibility Maps for Spatial Planning in Lower Austria;Bell,2013

2. Landslide Hazard and Risk;Clague,2012

3. Sendai Framework for Disaster Risk Reduction 2015–2030,2015

4. Landslide Hazard Assessment and Historical Landslide Data—An Inseparable Couple?;Glade,2001

5. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3