RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN

Author:

Anwar Khola,Rahman Taj,Zeb Asim,Khan InayatORCID,Zareei MahdiORCID,Vargas-Rosales CesarORCID

Abstract

LoRaWAN is renowned and a mostly supported technology for the Internet of Things, using an energy-efficient Adaptive Data Rate (ADR) to allocate resources (e.g., Spreading Factor (SF)) and Transmit Power (TP) to a large number of End Devices (EDs). When these EDs are mobile, the fixed SF allocation is not efficient owing to the sudden changes caused in the link conditions between the ED and the gateway. As a result of this situation, significant packet loss occurs, increasing the retransmissions from EDs. Therefore, we propose a Resource Management ADR (RM-ADR) at both ED and Network Sides (NS) by considering the packet transmission information and received power to address this issue. Through simulation results, RM-ADR showed improved performance compared to the state-of-the-art ADR techniques. The findings indicate a faster convergence time by minimizing packet loss ratio and retransmission in a mobile LoRaWAN network environment.

Funder

Zayed University Cluster Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. A Sigfox Energy Consumption Model

2. Comparison Of LPWA Technologies And Realizable Use Caseshttps://www.nctatechnicalpapers.com/Paper/2018/2018-comparison-of-lpwa-technologies-and-realizable-use-cases

3. Mobility-Aware Resource Assignment to IoT Applications in Long-Range Wide Area Networks

4. DPCA: Data Prioritization and Capacity Assignment in Wireless Sensor Networks

5. System Reference Document (SRdoc); Technical Characteristics for Low Power Wide Area Networks and Chirp Spread Spectrum (LPWAN-CSS) Operating in the UHF Spectrum below 1 GHz; ETSI TR 103 526 V1.1.1 (2018-04)https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3