Abstract
Sigfox has become one of the main Low-Power Wide Area Network (LPWAN) technologies, as it has attracted the attention of the industry, academy and standards development organizations in recent years. Sigfox devices, such as sensors or actuators, are expected to run on limited energy sources; therefore, it is crucial to investigate the energy consumption of Sigfox. However, the literature has only focused on this topic to a very limited extent. This paper presents an analytical model that characterizes device current consumption, device lifetime and energy cost of data delivery with Sigfox. In order to capture a realistic behavior, the model has been derived from measurements carried out on a real Sigfox hardware module. The model allows quantifying the impact of relevant Sigfox parameters and mechanisms, as well as frame losses, on Sigfox device energy performance. Among others, evaluation results show that the considered Sigfox device, powered by a 2400 mAh battery, can achieve a theoretical lifetime of 1.5 or 2.5 years while sending one message every 10 min at 100 bit/s or 600 bit/s, respectively, and an asymptotic lifetime of 14.6 years as the message transmission rate decreases.
Funder
Ministerio de Economía y Competitividad
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference24 articles.
1. Low Power Wide Area Networks: An Overview
2. From 6LoWPAN to 6Lo: Expanding the Universe of IPv6-Supported Technologies for the Internet of Things
3. Low-Power Wide Area Network (LPWAN): Overviewhttps://tools.ietf.org/html/rfc8376
4. LPWAN Static Context Header Compression (SCHC) and fragmentation for IPv6 and UDP;Minaburo;IETF Internet Draft,2018
5. SCHC over Sigfox LPWAN;Zúñiga;IETF Internet Draft,2018
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献