Abstract
Recent advances in remote sensing technology provide sufficient spatial detail to achieve species-level classification over large vegetative ecosystems. In deciduous-dominated forests, however, as tree species diversity and forest structural diversity increase, the frequency of spectral overlap between species also increases and our ability to classify tree species significantly decreases. This study proposes an operational workflow of individual tree-based species classification for a temperate, mixed deciduous forest using three-seasonal WorldView images, involving three steps of individual tree crown (ITC) delineation, non-forest gap elimination, and object-based classification. The process of species classification started with ITC delineation using the spectral angle segmentation algorithm, followed by object-based random forest classifications. A total of 672 trees was located along three triangular transects for training and validation. For single-season images, the late-spring, mid-summer, and early-fall images achieve the overall accuracies of 0.46, 0.42, and 0.35, respectively. Combining the spectral information of the early-spring, mid-summer, and early-fall images increases the overall accuracy of classification to 0.79. However, further adding the late-fall image to separate deciduous and coniferous trees as an extra step was not successful. Compared to traditional four-band (Blue, Green, Red, Near-Infrared) images, the four additional bands of WorldView images (i.e., Coastal, Yellow, Red Edge, and Near-Infrared2) contribute to the species classification greatly (OA: 0.79 vs. 0.53). This study gains insights into the contribution of the additional spectral bands and multi-seasonal images to distinguishing species with seemingly high degrees of spectral overlap.
Subject
General Earth and Planetary Sciences