Monitoring drought response and chlorophyll content in Quercus by consumer-grade, near-infrared (NIR) camera: a comparison with reflectance spectroscopy

Author:

Raddi SabrinaORCID,Giannetti FrancescaORCID,Martini SofiaORCID,Farinella FabioORCID,Chirici GherardoORCID,Tani Andrea,Maltoni AlbertoORCID,Mariotti BarbaraORCID

Abstract

AbstractA user-friendly and affordable broad-band digital Near Infrared (NIR) camera (Canon PowerShot S110 NIR) was compared with a narrow-band reflectance spectrometer (USB2000, Ocean Optics) at leaf scale for monitoring changes in response to drought of three ecologically contrasting Quercus species (Q. robur, Q. pubescens, and Q. ilex). We aimed to (a) compare vegetation indices (VIs; that is: NDVI, Normalized Difference Vegetation Index; GNDVI, Green NDVI and NIRv, near-infrared reflectance of vegetation) retrieved by NIR-camera and spectrometer in order to test the reliability of a simple, low-cost, and rapid setup for widespread field applications; (b) to assess if NIR-camera VIs might be used to quantify water stress in oak seedlings; and (c) to track changes in leaf chlorophyll content. The study was carried out during a water stress test on 1-year-old seedlings in a greenhouse. The camera detected plant status in response to drought with results highly comparable to the visible/NIR (VIS/NIR) spectrometer (by calibration and standard geometry). Consistency between VIs and morpho-physiological traits was higher in Q. robur, the most drought-sensitive among the three species. Chlorophyll content was estimated with a high goodness-of-fit by VIs or reflectance bands in the visible range. Overall, NDVI performed better than GNDVI and NIRv, and VIs performed better than single bands. Looking forward, NIR-camera VIs are adequate for the early monitoring of drought stress in oak seedlings (or small trees) in the post-planting phase or in nursery settings, thus offering a new, reliable alternative for when costs are crucial, such as in the context of restoration programs.

Funder

Regione Toscana

Università degli Studi di Firenze

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3