Abstract
The exposure of carbon-fiber-reinforced polymers (CFRPs) to open-field conditions was investigated. Establishment of structure–property relations with nanoindentation enabled the observation of modification effects on carbon-fiber interfaces, and impact resistance. Mapping of nanomechanical properties was performed using expectation-maximization optimization of Gaussian fitting for each CFRPs microstructure (matrix, interface, carbon fiber), while Weibull analysis connected the weathering effect to the statistically representative behavior of the produced composites. Plasma modification demonstrated reduced defect density and improved nanomechanical properties after weathering. Artificial intelligence for anomaly detection provided insights on condition monitoring of CFRPs. Deep-learning neural networks with three hidden layers were used to model the resistance to plastic deformation based on nanoindentation parameters. This study provides new assessment insights in composite engineering and quality assurance, especially during exposure under service conditions.
Funder
Horizon 2020 Framework Programme
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献