Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives

Author:

Konstantopoulos GeorgiosORCID,Koumoulos Elias P.ORCID,Charitidis Costas A.ORCID

Abstract

Machine learning has been an emerging scientific field serving the modern multidisciplinary needs in the Materials Science and Manufacturing sector. The taxonomy and mapping of nanomaterial properties based on data analytics is going to ensure safe and green manufacturing with consciousness raised on effective resource management. The utilization of predictive modelling tools empowered with artificial intelligence (AI) has proposed novel paths in materials discovery and optimization, while it can further stimulate the cutting-edge and data-driven design of a tailored behavioral profile of nanomaterials to serve the special needs of application environments. The previous knowledge of the physics and mathematical representation of material behaviors, as well as the utilization of already generated testing data, received specific attention by scientists. However, the exploration of available information is not always manageable, and machine intelligence can efficiently (computational resources, time) meet this challenge via high-throughput multidimensional search exploration capabilities. Moreover, the modelling of bio-chemical interactions with the environment and living organisms has been demonstrated to connect chemical structure with acute or tolerable effects upon exposure. Thus, in this review, a summary of recent computational developments is provided with the aim to cover excelling research and present challenges towards unbiased, decentralized, and data-driven decision-making, in relation to increased impact in the field of advanced nanomaterials manufacturing and nanoinformatics, and to indicate the steps required to realize rapid, safe, and circular-by-design nanomaterials.

Funder

European Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3