A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset

Author:

Elshewey Ahmed M.ORCID,Shams Mahmoud Y.ORCID,Elhady Abdelghafar M.ORCID,Shohieb Samaa M.ORCID,Abdelhamid Abdelaziz A.ORCID,Ibrahim AbdelhameedORCID,Tarek ZahraaORCID

Abstract

Forecasting is defined as the process of estimating the change in uncertain situations. One of the most vital aspects of many applications is temperature forecasting. Using the Daily Delhi Climate Dataset, we utilize time series forecasting techniques to examine the predictability of temperature. In this paper, a hybrid forecasting model based on the combination of Wavelet Decomposition (WD) and Seasonal Auto-Regressive Integrated Moving Average with Exogenous Variables (SARIMAX) was created to accomplish accurate forecasting for the temperature in Delhi, India. The range of the dataset is from 2013 to 2017. It consists of 1462 instances and four features, and 80% of the data is used for training and 20% for testing. First, the WD decomposes the non-stationary data time series into multi-dimensional components. That can reduce the original time series’ volatility and increase its predictability and stability. After that, the multi-dimensional components are used as inputs for the SARIMAX model to forecast the temperature in Delhi City. The SARIMAX model employed in this work has the following order: (4, 0, 1). (4, 0, [1], 12). The experimental results demonstrated that WD-SARIMAX performs better than other recent models for forecasting the temperature in Delhi city. The Mean Square Error (MSE), Mean Absolute Error (MAE), Median Absolute Error (MedAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and determination coefficient (R2) of the proposed WD-SARIMAX model are 2.8, 1.13, 0.76, 1.67, 4.9, and 0.91, respectively. Furthermore, the WD-SARIMAX model utilized the proposed to forecast the temperature in Delhi over the next eight years, from 2017 to 2025.

Funder

Umm al-Qura University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference31 articles.

1. Pachauri, R.K., and Reisinger, A. (2008). Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report.

2. Intelligent metaheuristics with optimal machine learning approach for malware detection on IoT-enabled maritime transportation systems;Maray;Expert Syst.,2022

3. Weather forecasting prediction using ensemble machine learning for big data applications;Shaiba;Comput. Mater. Contin.,2022

4. Nonlinear correlations of daily temperature records over land;Bartos;Nonlinear Process. Geophys.,2006

5. Characteristics of daily and extreme temperatures over Canada;Bonsal;J. Clim.,2001

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3