Water quality prediction using machine learning models based on grid search method

Author:

Shams Mahmoud Y.ORCID,Elshewey Ahmed M.,El-kenawy El-Sayed M.,Ibrahim Abdelhameed,Talaat Fatma M.,Tarek Zahraa

Abstract

AbstractWater quality is very dominant for humans, animals, plants, industries, and the environment. In the last decades, the quality of water has been impacted by contamination and pollution. In this paper, the challenge is to anticipate Water Quality Index (WQI) and Water Quality Classification (WQC), such that WQI is a vital indicator for water validity. In this study, parameters optimization and tuning are utilized to improve the accuracy of several machine learning models, where the machine learning techniques are utilized for the process of predicting WQI and WQC. Grid search is a vital method used for optimizing and tuning the parameters for four classification models and also, for optimizing and tuning the parameters for four regression models. Random forest (RF) model, Extreme Gradient Boosting (Xgboost) model, Gradient Boosting (GB) model, and Adaptive Boosting (AdaBoost) model are used as classification models for predicting WQC. K-nearest neighbor (KNN) regressor model, decision tree (DT) regressor model, support vector regressor (SVR) model, and multi-layer perceptron (MLP) regressor model are used as regression models for predicting WQI. In addition, preprocessing step including, data imputation (mean imputation) and data normalization were performed to fit the data and make it convenient for any further processing. The dataset used in this study includes 7 features and 1991 instances. To examine the efficacy of the classification approaches, five assessment metrics were computed: accuracy, recall, precision, Matthews's Correlation Coefficient (MCC), and F1 score. To assess the effectiveness of the regression models, four assessment metrics were computed: Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), and coefficient of determination (R2). In terms of classification, the testing findings showed that the GB model produced the best results, with an accuracy of 99.50% when predicting WQC values. According to the experimental results, the MLP regressor model outperformed other models in regression and achieved an R2 value of 99.8% while predicting WQI values.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3