Abstract
Hyperglycemic environment-induced oxidative stress-mediated matrix metalloproteinase-1 (MMP-1) plays a crucial role in the degradation of the extracellular matrix (ECM), which might contribute to premature skin aging. Synthesized, environmentally friendly gallic acid-coated gold nanoparticles (GA–AuNPs) have been evaluated as an anti-aging antioxidant. Their microstructure was characterized by transmission electron microscopy (TEM), which showed that GA–AuNPs are spherical when prepared at pH 11. Dynamic light scattering (DLS) analysis revealed that the average hydrodynamic diameter of a GA–AuNP is approximately 40 nm and with a zeta potential of −49.63 ± 2.11 mV. Additionally, the present data showed that GA–AuNPs have a superior ability to inhibit high glucose-mediated MMP-1-elicited type I collagen degradation in dermal fibroblast cells. Collectively, our data indicated that high-glucose-mediated ROS production was reduced upon cell treatment with GA–AuNPs, which blocked p38 MAPK/ERK-mediated c-Jun, c-Fos, ATF-2 phosphorylation, and the phosphorylation of NFκB, leading to the down-regulation of MMP-1 mRNA and protein expression in high glucose-treated cells. Our findings suggest that GA-AuNPs have a superior ability to inhibit high-glucose-mediated MMP-1-elicited ECM degradation, which highlights its potential as an anti-aging ingredient.
Funder
Ministry of Science and Technology
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献