Abstract
Environment-friendly advanced materials are promising candidates for the engineering of nanoscience and nanotechnology. Here, starch–kaolin self-assembled nanocomposite films were prepared using potato starch and an indigenous layered material, kaolin. The films consist of kaolin and the matrix, which were prepared by the disruption and plasticization of starch granules with water and glycerol. Self-assembled nanocomposite films with 0%, 5%, 10%, 15%, and 20% w/w of kaolin were fabricated by casting and evaporating the mixture from homogeneous aqueous suspension at 95 °C. The thickness of the film—about 200 μm—was controlled by a predesigned glass frame. The resulting films were conditioned before testing, and the effect of accelerated aging in a moist atmosphere was investigated. The films were characterized using attenuated total reflection infrared (ATR-IR) spectroscopy for the interaction of moieties via function groups, X-ray diffraction (XRD) for crystallinity change, universal testing machine (UTM) for tensile strength Young’s modulus and elongation at break investigation. The thermal stability of the films using thermogravimetric analysis (TGA) and the effect of temperature on contraction behaviors using thermal mechanical analysis (TMA) were carried out. The distribution of kaolin into the matrix and morphology of the self-assembled nanocomposite films were observed from scanning electron microscopy (SEM) images. Developed nanocomposite materials from an indigenous source would play a vital role in the field of food packaging industries in Bangladesh.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献