Extraction of Cellulosic Compound from Jackfruit Peel Waste and Characterization of PVA Cellulose Composite as Biodegradable Film

Author:

Rahman AquibORCID,Nipu Shah Md AshiquzzamanORCID,Alam Md Shamsul,Alam S. Sharar,Ahmed Md. Tanvir,Shantona Anika Afroz,Moon Mahjabin

Abstract

Plastics utilized in packaging have a significant impact on the environment, leading to considerable concerns regarding human and environmental well‐being. Researchers globally are working to counteract these incidents by integrating biopolymers like starch, cellulose, chitosan, etc., into the packaging sector because of their nontoxic nature, biodegradability, and eco‐friendly properties. This study aims to extract cellulose from jackfruit (Artocarpus heterophyllus) peel by combining bleaching and alkaline treatment (17.5% w/v NaOH) and utilizes the extracted cellulosic compounds to produce a practical biodegradable film. The constructed film can be an alternative to synthetic films currently used in industries, minimize environmental harm caused by plastics, and offer a waste management option for jackfruit peels. The study extracted 28.04% cellulose from jackfruit peel wastes, and it was subsequently utilized to develop a biocompatible composite film containing polyvinyl alcohol (PVA) and extracted cellulose. The percentage of cellulose being used in PVA is 0%, 20%, 50%, and 80% compared to pure PVA film. Mechanical properties (tensile atrength, elastic modulus, tensile energy absorption, and strain) as well as thermogravimetric analysis (TGA/DTA), Fourier transform infrared (FTIR), water absorption, and soil burial test were done to define the material and functional properties of 0%, 20%, 50%, and 80% cellulose‐PVA composite film. Among four films, 20% of the jackfruit‐extracted cellulose‐reinforced PVA film has shown better results compared to others. It has shown maximum thermal stability at 368.2°C. Conversely, the 50% cellulose‐reinforced PVA film has maximum contraction at 57.4°C with a value of 130.6 μm compared to other percentages in terms of thermomechanical analysis. It also shows the maximum water absorption percentage. It is evident from this study that a cellulosic component generated from jackfruit peels can be used with PVA to make biodegradable packaging films.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3