Morphology–Dependent Electrochemical Sensing Properties of Iron Oxide–Graphene Oxide Nanohybrids for Dopamine and Uric Acid

Author:

Cai Zhaotian,Ye Yabing,Wan Xuan,Liu Jun,Yang Shihui,Xia Yonghui,Li GuangliORCID,He Quanguo

Abstract

Various morphologies of iron oxide nanoparticles (Fe2O3 NPs), including cubic, thorhombic and discal shapes were synthesized by a facile meta-ion mediated hydrothermal route. To further improve the electrochemical sensing properties, discal Fe2O3 NPs with the highest electrocatalytic activity were coupled with graphene oxide (GO) nanosheets. The surface morphology, microstructures and electrochemical properties of the obtained Fe2O3 NPs and Fe2O3/GO nanohybrids were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. As expected, the electrochemical performances were found to be highly related to morphology. The discal Fe2O3 NPs coupled with GO showed remarkable electrocatalytic activity toward the oxidation of dopamine (DA) and uric acid (UA), due to their excellent synergistic effect. The electrochemical responses of both DA and UA were linear to their concentrations in the ranges of 0.02–10 μM and 10–100 μM, with very low limits of detection (LOD) of 3.2 nM and 2.5 nM for DA and UA, respectively. Moreover, the d-Fe2O3/GO nanohybrids showed good selectivity and reproducibility. The proposed d-Fe2O3/GO/GCE realized the simultaneous detection of DA and UA in human serum and urine samples with satisfactory recoveries.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3