Comparison of Long Short Term Memory Networks and the Hydrological Model in Runoff Simulation

Author:

Fan HongxiangORCID,Jiang Mingliang,Xu LigangORCID,Zhu HuaORCID,Cheng JunxiangORCID,Jiang Jiahu

Abstract

Runoff modeling is one of the key challenges in the field of hydrology. Various approaches exist, ranging from physically based over conceptual to fully data driven models. In this paper, we propose a data driven approach using the state-of-the-art Long-Short-Term-Memory (LSTM) network. The proposed model was applied in the Poyang Lake Basin (PYLB) and its performance was compared with an Artificial Neural Network (ANN) and the Soil & Water Assessment Tool (SWAT). We first tested the impacts of the number of previous time step (window size) in simulation accuracy. Results showed that a window in improper large size will dramatically deteriorate the model performance. In terms of PYLB, a window size of 15 days might be appropriate for both accuracy and computational efficiency. We then trained the model with 2 different input datasets, namely, dataset with precipitation only and dataset with all available meteorological variables. Results demonstrate that although LSTM with precipitation data as the only input can achieve desirable results (where the NSE ranged from 0.60 to 0.92 for the test period), the performance can be improved simply by feeding the model with more meteorological variables (where NSE ranged from 0.74 to 0.94 for the test period). Moreover, the comparison results with the ANN and the SWAT showed that the ANN can get comparable performance with the SWAT in most cases whereas the performance of LSTM is much better. The results of this study underline the potential of the LSTM for runoff modeling especially for areas where detailed topographical data are not available.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3