Comparative Analysis of Snowmelt-Driven Streamflow Forecasting Using Machine Learning Techniques

Author:

Thapa Ukesh1ORCID,Pati Bipun Man1,Thapa Samit2,Pyakurel Dhiraj3,Shrestha Anup4

Affiliation:

1. AI Research Center, Advanced College of Engineering and Management, Kathmandu 44600, Nepal

2. Department of Civil Engineering, Advanced College of Engineering and Management, Kathmandu 44600, Nepal

3. Department of Electronics and Computer Engineering, Advanced College of Engineering and Management, Kathmandu 44600, Nepal

4. Department of Electronics and Computer Engineering, National College of Engineering, Lalitpur 44700, Nepal

Abstract

The rapid advancement of machine learning techniques has led to their widespread application in various domains, including water resources. However, snowmelt modeling remains an area that has not been extensively explored. In this study, we propose a state-of-the-art (SOTA) deep learning sequential model, leveraging a Temporal Convolutional Network (TCN), for snowmelt forecasting of the Hindu Kush Himalayan (HKH) region. To evaluate the performance of our proposed model, we conducted a comparative analysis with other popular models, including Support Vector Regression (SVR), Long Short-Term Memory (LSTM), and Transformer models. Furthermore, nested cross-validation (CV) was used with five outer folds and three inner folds, and hyperparameter tuning was performed on the inner folds. To evaluate the performance of the model, the Mean Absolute Error (MAE), Root-Mean-Square Error (RMSE), R square (R2), Kling–Gupta Efficiency (KGE), and Nash–Sutcliffe Efficiency (NSE) were computed for each outer fold. The average metrics revealed that the TCN outperformed the other models, with an average MAE of 0.011, RMSE of 0.023, R2 of 0.991, KGE of 0.992, and NSE of 0.991 for one-day forecasts of streamflow. The findings of this study demonstrate the effectiveness of the proposed deep learning model as compared to traditional machine learning approaches for snowmelt-driven streamflow forecasting. Moreover, the superior performance of this TCN highlights its potential as a promising deep learning model for similar hydrological applications.

Funder

Advanced College of Engineering and Management, Tribhuvan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3