The Effect of Microstructure and Axial Tension on Three-Point Bending Fatigue Behavior of TC4 in High Cycle and Very High Cycle Regimes

Author:

Bao Xuechun,Cheng Li,Ding Junliang,Chen Xuan,Lu Kaiju,Cui Wenbin

Abstract

The effects of microstructure and axial tension on the fatigue behavior of TC4 titanium alloy in high cycle (HCF) and very high cycle (VHCF) regimes are discussed in this paper. Ultrasonic three-point bending fatigue tests at 20 kHz were done on a fatigue life range among 105–109 cycles of the alloys with equiaxed, bimodal and Widmanstatten microstructures. Experimental results without axial tension show that three typical shapes of S-N curves clearly present themselves for the three different microstructures. Moreover, the crack initiation sites abruptly shifted from surface to subsurface of the specimen in the very high cycle fatigue regime for equiaxed and bimodal microstructures. But for the Widmanstatten microstructure, both surface and subsurface crack initiation appeared in the high cycle fatigue regime, and the multi-points crack initiation was found in the bimodal microstructure. The subsurface fatigue crack originated from the αp grains in equiaxed and bimodal microstructures. However, it originated from the coarse grain boundary α in the Widmanstatten microstructure. Additionally, the S-N curve shape, fatigue life and fatigue crack initiation mechanism with axial tension are similar to that without axial tension. However, the crack origin point shifts inward with axial tension.

Funder

National Basic Research Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3