A Novel Ultrasonic Fatigue Test and Application in Bending Fatigue of TC4 Titanium Alloy

Author:

Tang Sen,Wang Xinyu,Huang Beihai,Yang Dongtong,Li LangORCID,He ChaoORCID,Xu Bo,Liu Yongjie,Wang ChongORCID,Wang Qingyuan

Abstract

The very high cycle fatigue (VHCF) problems of thin-plate structures are usually caused by high-frequency vibrations. This paper proposes an accelerated fatigue test method based on ultrasonic loading technology in order to develop a feasible bending testing method and explore the bending fatigue characteristics of thin-plate structures in the VHCF regime. A new bending fatigue specimen with an intrinsic frequency of 20 kHz was designed based on cantilever bending through finite element simulation. It was verified by the axial load test with R = −1. The results showed that the method could effectively transfer the dangerous cross-section at the first-order cantilever bending restraint to the internal part of the specimen, thereby making the fracture location independent of the complex stresses. The linear relationship between the vibration amplitude and the maximum stress was also verified using strain measurements. Furthermore, the S-N curves and fracture morphology for different loading types were consistent with conventional studies to a certain extent, which indicated that the design of the bending test model was reasonable.

Funder

National Natural Science Foundation of China

SCU-NPIC Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3