Entropy-Based Behavioral Closeness Filtering Chaotic Activity Method

Author:

Li Juan1,Fang Xianwen12ORCID,Zuo Yinkai1

Affiliation:

1. School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China

2. Anhui Province Engineering Laboratory for Big Data Analysis and Early Warning Technology of Coal Mine Safety, Huainan 232001, China

Abstract

In the era of big data, one of the key challenges is to discover process models and gain insights into business processes by analyzing event data recorded in information systems. However, Chaotic activity or infrequent behaviors often appear in actual event logs. Process models containing such behaviors are complex, difficult to understand, and hide the relevant key behaviors of the underlying processes. Established studies have generally achieved chaotic activity filtering by filtering infrequent activities or activities with high entropy values and ignoring the behavioral relationships that exist between activities, resulting in effective low-frequency behaviors being filtered. To solve this problem, this paper proposes an entropy-based behavioral closeness filtering of chaotic activities method. Firstly, based on the behavior profile theory of high-frequency logging activities, the process model is constructed by combining the feature network and the module network. Then, the identification of suspected chaotic activity sets is achieved through the Laplace entropy value. Next, a query model is built based on logs containing suspicious chaotic activity. Finally, based on the succession relationship, the behavioral closeness of the query model and the business process model is analyzed to achieve the goal of accurately filtering chaotic activities to retain behaviors beneficial to the process. To evaluate the performance of the method, we validated the effectiveness of the proposed algorithm in synthetic logs and real logs, respectively. Experimental results showed that the proposed method performs better in precision after filtering chaotic activities.

Funder

Scientific Research Project for Graduate Students of Anhui Province

National Natural Science Foundation, China

Anhui Provincial Natural Science Foundation

Key Research and Development Program of Anhui Province

Leading Backbone Talent Project in Anhui Province, China

Anhui Province Academic and Technical Leader Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3