Pre-Processing Event Logs by Chaotic Filtering Approaches Based on the Direct Following Relationship

Author:

Lv Tengzi1,Gong Xiugang1,Gong Na1,Li Kaiyu1

Affiliation:

1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China

Abstract

Process discovery aims to discover process models from event logs to describe actual business processes. The quality of event logs has an impact on the quality of process models, so preprocessing methods can be used to improve the quality of event logs. Chaotic activities may exist in real business scenarios, and the occurrence of chaotic activities is independent of other activities in the process and can occur at any location in the event log at any frequency. Therefore, chaotic activities seriously affect the model quality of process discovery. Filtering chaotic activities in event logs can effectively improve the quality of event logs and thus improve the quality of process models. The traditional chaotic activity filtering algorithm makes it difficult to balance accuracy and time performance. Therefore, a direct method for filtering chaotic activities is proposed in this paper. By analyzing the relationship between activities, chaotic activities are identified in the log according to the characteristics of chaotic activities and the direct following relationship of activities as the judgment condition, and the filtering of chaotic activities in the event log is realized. In addition, this paper proposes an indirect chaotic activity filtering method, which identifies and filters chaotic activities in the log by analyzing the influence of the existence of different activities on the overall chaos degree of the log. The proposed method is compared with the traditional chaotic activity filtering method on several simulation/real data sets, and the accuracy and running time between the multi-group event logs and the process models generated before and after chaotic activity filtering are analyzed, further verifying the effectiveness and feasibility of the proposed method. By summarizing the experimental results, it is found that the accuracy of the proposed chaotic activity filtering methods is greater than that of the frequency-based filtering method and is close to that of the entropy-based chaotic activity filtering methods. Moreover, compared with other filtering methods used in the experiment, the chaotic activity filtering method proposed in this paper can improve the efficiency by 23.4% on average for simulation logs, and by 84.25% on average for real event logs. It is concluded that compared with other filtering methods, the proposed chaotic activity filtering methods have higher accuracy and can effectively improve the time performance of chaotic activity filtering. Therefore, the chaotic activity filtering method proposed in this paper can balance the accuracy and time performance, and can ensure the integrity of the filtered event log to a certain extent.

Funder

Shandong Provincial Undergraduate Teaching Reform Project

National College Students’ Innovation and Entrepreneurship Training Program

Shandong Provincial Natural Science Foundation of P.R. China

Shandong University of Technology Postgraduate Teaching Reform Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3