Orifice Flow Dynamics in a Rocket Injector as an Excitation Source of Injector-Driven Combustion Instabilities

Author:

Son Min1ORCID,Börner Michael1ORCID,Armbruster Wolfgang1ORCID,Hardi Justin S.1ORCID

Affiliation:

1. Institute of Space Propulsion, German Aerospace Center (DLR), D-74239 Lampoldshausen, Germany

Abstract

To investigate a hypothesis of the orifice flow-induced instability in rocket engine thrust chambers, a single liquid oxygen (LOX) injector with an optically accessible orifice module was used for experiments, with water as a simulant for LOX. The unsteady pressure downstream of the orifice was measured using high-speed piezoelectric sensors under cavitating and non-cavitating intra-injector flow conditions. The cavitating orifice flows were directly visualized via backlight imaging with a high-speed camera through the optically accessible orifice module. Cavitation initiated at the cavitation number of 2.05, and the downstream bubble cloud formation started below 1.91. The unsteady pressure spectrum arising from cavitation comprises multiple peaks over a broad frequency range, which can cause low- and high-frequency instabilities. The dominant frequencies from cavitation decrease with increasing pressure drop, while the frequencies during non-cavitating flow increase. The non-cavitating orifice flow excites the second longitudinal acoustic mode of the injector tube. The acoustic mode excited by the non-cavitating flow becomes stronger when the pressure peak in the range of whistling phenomenon is close to the first longitudinal acoustic mode. In conclusion, the excitation mechanisms of the orifice-induced instability for the cavitating and non-cavitating flows were well identified, despite the limitations of water as a simulant for LOX.

Funder

DLR

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3