Intelligent Levenberg–Marquardt neural network solution to flow of carbon nanotubes in a nozzle of liquid rocket engine

Author:

Muhammad Noor,Ahmed NaveedORCID

Abstract

Abstract In this research, we utilized artificial neural networks along with the Levenberg–Marquardt algorithm (ANN-LMA) to interpret numerical computations related to the efficiency of heat transfer in a regenerative cooling channel of a rocket engine. We used a mixture of Kerosene and carbon nanotubes (CNTs) for this purpose, examining both single-wall carbon nanotubes and multi-wall carbon nanotubes. The primary equations were converted into a dimensionless form using a similarity transformation technique. To establish a reference dataset for ANN- LMA and to analyze the movement and heat transfer properties of CNTs, we employed a numerical computation method called bvp4c, which is a solver for boundary value problems in ordinary differential equations using finite difference schemes combined with the Lobatto IIIA algorithm in MATLAB mathematical software. The ANN- LMA method was trained, tested and validated using these reference datasets to approximate the solutions of the flow model under different scenarios involving various significant physical parameters. We evaluated the accuracy of the proposed ANN- LMA model by comparing its results with the reference outcomes. We validated the performance of ANN- LMA in solving the Kerosene-based flow with CNTs in a rocket engine through regression analysis, histogram studies, and the calculation of the mean square error. The comprehensive examination of parameters undertaken in this research endeavor is poised to provide invaluable support to aerospace engineers as they endeavor to craft regenerative equipment with optimal efficiency. The pragmatic implications of our study are wide-ranging, encompassing domains as diverse as aerospace technology, materials science, and artificial intelligence. This research holds the potential to catalyze progress across multiple sectors and foster the evolution of increasingly efficient and sustainable systems.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3