Numerical Investigation on the Jet Characteristics and the Heat and Drag Reductions of Opposing Jet in Hypersonic Nonequilibrium Flows

Author:

Zhang Wenqing,Wang XiaoweiORCID,Zhang ZhijunORCID,Su TianyiORCID

Abstract

We adopted the transient numerical method for the simulation of an ELECTRE vehicle with an opposing jet at an altitude of 53.3 km and 13 Ma to explore the jet characteristics as well as the performance in heat and drag reductions of the opposing jet in hypersonic nonequilibrium flows. The time-accurate, nonequilibrium N-S equations coupled with the five-species Park chemical kinetic model and vibrational energy excitation were applied, and an open source solver Hy2FOAM based on the OpenFOAM platform was adopted. Three opposing jets with different jet radii (R7 jet, R14 jet, and R21 jet) were investigated. The results show that with the increasing jet flow rate, the jet mode of the opposing jet with a small jet radius varies from the overflow mode to the long penetration mode (LPM) and finally to the short penetration mode (SPM), while that with a large jet radius directly changes from the overflow mode to the SPM. The state of the jet in the overflow mode is stable, whereas in SPM and LPM, it is unstable. The investigation of the heat and drag reductions for the R7, R14, and R21 jets shows that except for the jet in LPM, the jet in SPM and overflow mode can provide effective thermal protection, and the thermal protection is enhanced with the increasing jet flow rate. Moreover, the jet in both LPM and SPM can effectively reduce the aerodynamic drag, but the jet in overflow mode cannot provide effective drag reduction. Moreover, the jet with a large radius and in the overflow mode has a better thermal protection effect, and a small jet radius contributes to the drag reduction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3