Environmental Noise Assessment of Holding Approach Procedures Using a Multi-Level Simulation Framework

Author:

Felix Greco GilORCID,Yildiz BekirORCID,Göing JanORCID,Ring Tobias P.ORCID,Feuerle ThomasORCID,Hecker PeterORCID,Langer Sabine C.ORCID

Abstract

Computational models of sufficient quality are indispensable to quantitatively assess aircraft noise reduction measures. Within this study, a multi-level simulation framework is established in order to predict the environmental noise of holding approach procedures by coupling simulation models from three different domains: flight performance calculation employing the base of aircraft data (BADA), jet engine performance using the software Gasturb and aircraft noise simulations based on the software sonAIR. Two different concepts of holding approach procedures are investigated, namely, the vertical holding stack and the linear hold point merge. The study is conducted considering generic air traffic scenarios at a single-runway airport. Thereby, the investigated air traffic is based on a statistical analysis of traffic data at existing airports and thus assumed to be representative. As the aircraft’s noise emission depends on both the aircraft and the engine performance, reliable results can be expected only if all individual challenges and interdependencies are accounted for simultaneously. Addressing this challenge is the main contribution of the presented work. The presented results show the plausibility of the proposed multi-level simulation framework, thus supporting its use to investigate the environmental noise impact of air traffic scenarios.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference67 articles.

1. Flightpath 2050: Europe’s vision for aeronautics;Krein,2012

2. Cost Assessment of Near and Mid-Term Technologies to Improve New Aircraft Fuel Efficiency;Kharina,2016

3. Transition policies for climatically sustainable aviation

4. SESAR: The Past, Present, and Future of European Air Traffic Management Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3