Experiment and Numerical Simulation on Damage Behavior of Honeycomb Sandwich Composites under Low-Energy Impact

Author:

Zheng Xiaoxia12,He Bohan1,Zou Yu1,Yang Qiao1,Cao Yupeng1,Li Zhiqiang123,Han Yaokun1

Affiliation:

1. College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, China

2. Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

3. Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

It is well-established that the honeycomb sandwich composite structures are easily prone to damage under low-energy impact. Consequently, it would lead to a dramatic decrease in structural load-bearing capacity and a threat to overall safety. Both experimental and numerical simulations are carried out to investigate the impact damage behavior of honeycomb sandwich composite specimens. The damage mode, damage parameters, and contact force-time curves of three types of panel materials with T300, T700, and T800 are obtained under different impact energies of 10 J, 20 J, and 40 J by the drop-weight impact experiment. Moreover, digital image correlation (DIC) tests are used to measure the deformation and strain of the lower panel. The experimental results reveal that the degree of damage increases with increasing impact energy. Particularly, the T300 panel specimen exhibits visible fiber fracture when subjected to an impact energy of 40 J. The impact process involves matrix cracking, fiber fracture, and delamination of the upper panel occurring first, followed by immediate crush damage to the honeycomb core and, finally, slight fiber damage to the lower panel. Due to its higher strength, the T800 panel specimen exhibits the highest damage resistance compared to the T700 and T300 panel specimens. To consider the microscopic failure criteria and various types of contact during the impact process, a finite element model of honeycomb sandwich composites is established, and numerical simulation analysis of low-energy impact is performed to determine the damage mode, damage size, and contact-force curves. Comparative analysis demonstrates good agreement between the simulation and experimental results. The findings of this study provide valuable technical support for the widespread application of honeycomb sandwich composites in the aviation field.

Funder

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3