Abstract
4D flight trajectory optimization is an essential component to improve flight efficiency and to enhance air traffic capacity. this technique not only helps to reduce the operational costs, but also helps to reduce the environmental impact caused by the airliners. This study considers Dynamic Programming (DP), a well-established numerical method ideally suited to solve 4D flight Trajectory Optimization Problems (TOPs). However, it bears some shortcomings that prevent the use of DP in many practical real-time implementations. This paper proposes a Modified Dynamic Programming (MDP) approach that reduces the computational effort and overcomes the drawbacks of the traditional DP. In this paper, two numerical examples with fixed arrival times are presented, where the proposed MDP approach is successfully implemented to generate optimal trajectories that minimize aircraft fuel consumption and emissions. Then the obtained optimal trajectories are compared with the corresponding reference commercial flight trajectory for the same route in order to quantify the potential benefit of reduction of aircraft fuel consumption and emissions.
Funder
Portuguese Foundation for Sciences and Technology
Reference36 articles.
1. Aviation: Benefits Beyond Borders,2018
2. Commercial Airline Speed Optimization Strategies for Reduced Cruise Fuel Consumption
3. Applied Optimal Control: Optimization, Estimation and, Control;Bryson,1975
4. Survey of Numerical Methods for Trajectory Optimization
5. A survey of numerical methods for optimal control;Rao;Adv. Astronaut. Sci.,2009
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献