Large-Eddy Simulations of Unsteady Reaction Flow Characteristics Using Four Geometrical Combustor Models

Author:

Meng Nan1,Li Feng1ORCID

Affiliation:

1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China

Abstract

Combustion instability constitutes the primary loss source of combustion chambers, gas turbines, and aero engines, and it affects combustion performance or results in a sudden local oscillation. Therefore, this study investigated the factors affecting flame fluctuation on unsteady combustion flow fields through large-eddy simulations. The effects of primary and secondary holes in a triple swirler staged combustor on flame propagation and pressure fluctuation in a combustion field were studied. Moreover, the energy oscillations and dominant frequencies in the combustion field were obtained using the power spectral density technique. The results revealed a variation in the vortex structure and Kelvin–Helmholtz instability in the combustion field, along with a variation in the pressure pulsation during flame propagation under the influence of the primary and secondary hole structures. Additionally, the spatial distributions of pressure oscillation and heat release rate amplitude were obtained, revealing that the foregoing increased owing to the primary and secondary holes in the combustion field, reaching a peak in the shear layer and vortex structure regions.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3