Abstract
In an effort to maximize the combat effectiveness of multimissile groups, this paper proposes an adaptive simulated annealing–particle swarm optimization (SA-PSO) algorithm to enhance the design parameters of multimissile formations based on the concept of missile cooperative engagement. Firstly, considering actual battlefield circumstances, we establish an effectiveness evaluation index system for the cooperative engagement of missile formations based on the analytic hierarchy process (AHP). In doing so, we adopt a partial triangular fuzzy number method based on authoritative assessments by experts to ascertain the weight of each index. Then, considering given constraints on missile performance, by selecting the relative distances and angles of the leader and follower missiles as formation parameters, we design a fitness function corresponding to the established index system. Finally, we introduce an adaptive capability into the traditional particle swarm optimization (PSO) algorithm and propose an adaptive SA-PSO algorithm based on the simulated annealing (SA) algorithm to calculate the optimal formation parameters. A simulation example is presented for the scenario of optimizing the formation parameters of three missiles, and comparative experiments conducted with the traditional and adaptive PSO algorithms are reported. The simulation results indicate that the proposed adaptive SA-PSO algorithm converges faster than both the traditional and adaptive PSO algorithms and can quickly and effectively solve the multimissile formation optimization problem while ensuring that the optimized formation satisfies the given performance constraints.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Aviation Fund
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献