Effect of Paper or Silver Nanowires-Loaded Paper Interleaves on the Electrical Conductivity and Interlaminar Fracture Toughness of Composites

Author:

Guo Miaocai,Yi Xiaosu

Abstract

The effect of plant-fiber paper or silver nanowires-loaded paper interleaves on the electrical conductivity and interlaminar fracture toughness of composites was studied. Highly conductive paper was prepared by surface-loaded silver nanowires. The percolation threshold appeared at about 0.4 g/m2. The surface resistivity reached 2.3 Ω/sq when the areal density of silver nanowires was 0.95 g/m2. After interleaving the conductive papers in the composite interlayers, in-plane electrical conductivity perpendicular to the fiber direction was increased by 171 times and conductivity through thickness direction was increased by 2.81 times. However, Mode I and Mode II interlaminar fracture toughness decreased by 67.3% and 66.9%, respectively. Microscopic analysis showed that the improvement of conductivity was attributable to the formation of an electrical conducting network of silver nanowires which played a role in electrical connection of carbon fiber plies and the interleaving layers. However, the density of the highly packed flat plant fibers impeded the infiltration of resin. The parallel distribution of flat fibers to the carbon plies, and poor resin-fiber interface made the interlaminar fracture occur mainly at the interface of plant fibers and resin inside the interleaves, resulting in a decline of the interlaminar fracture toughness. The surface-loading of silver nanowires further impeded the infiltration of resin in the densely packed plant fibers, resulting in further decline of the fracture toughness.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3