Enhancing the Interlaminar Fracture Toughness and AO Resistance of CFRPs by Using Phosphorus-Containing Polymer/PEC-K Bifunctional Film

Author:

Guo MiaocaiORCID

Abstract

A new attempt to use a bifunctional interleaf for developing a novel structure–function-integrated composite with simultaneously improved interlaminar fracture toughness and atomic oxygen resistance was studied. The toughening mechanism and the atomic oxygen erosion property of the delaminated surfaces of the composites were examined. The bifunctional interleaf was prepared by blending a phosphorus-containing polymer and a thermoplastic polymer. After being interleaved, the mode I and mode II fracture toughness increased by 8.2% and 23.7% compared to the control sample, respectively. The toughness gains are much smaller than that of the only thermoplastic film-toughened composite because of the relative brittleness of the blend film. The atomic oxygen erosion rates of the mode I and mode II delamination surfaces decreased by 45.3% and 31.3% compared with the control, respectively. The carbon fibers on the irradiation surfaces are protected by a layer of phosphine oxide to prevent further erosion, and they were much less eroded, particularly for the mode I surface. In comparison, the erosion rates of the mode I and mode II surfaces of the toughened-only composite significantly increased by 83.6% and 107.2%, respectively, and the carbon fibers are seriously eroded.

Funder

the Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3