Simulation and Analysis of Fluid–Solid–Thermal Unidirectional Coupling of Near-Space Airship

Author:

Tang JiweiORCID,Xie WeichengORCID,Wang Xiaoliang,Chen Cheng

Abstract

Based on the biaxial experiment data of the membrane material under hot and cold conditions, the mechanical properties calculation model of envelope material was established with consideration of the effects of varying stress ratios, stress magnitudes and temperatures on the mechanical properties of near-space airship material. Using the heat source model, Computational Fluid Dynamics (CFD) simulation, User-Defined Function (UDF), structural finite element analysis software and the user subroutine of an airship to define the behaviour of fabric material, the fluid–structure–thermal coupling model of airship envelopes was established. In addition, a near-space airship was selected as the research subject to calculate the diurnal temperature differences during the summer solstice and analyse the diurnal temperature distribution of the envelope. Under controlled environmental conditions, the deformation law of the near-space airship under the influence of fluid–structure–thermal coupling was calculated and summarised. The present fluid–solid–thermal coupling model takes into account the anisotropy of materials, temperature, stress magnitude, stress ratio and other influencing factors, which can more accurately reflect and predict the stress–strain distribution and the deformation law of near-space airships.

Funder

Shanghai Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference33 articles.

1. Shape Exploration and Multidisciplinary Optimization Method of Semirigid Nearing Space Airships

2. Optimisation and analysis of efficiency for contra-rotating propellers for high-altitude airships

3. Thermal effects on a high altitude airship;Stefan;Proceedings of the American Institute of Aeronautics and Astronautics 5th Lighter Than Air Conference,1983

4. Advances in the Thermal Analysis of Scientific Balloons;Cathey,2006

5. Thermal Modeling of NASA’s Super Pressure Pumpkin Balloon;Garde;Proceedings of the AIAA Balloon Systems Conference,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3