Analysis and Optimization of Multi-Physical Field Coupling in Boom Flow Channel of Excavator Multiway Valves

Author:

Zheng Ze12,Chen Nuoyan12,Yuan Xiaoming12ORCID,Zhang Zongjin12,Liu Xiaoping12ORCID,Ma Zhiao1

Affiliation:

1. Heavy Machinery Fluid Power Transmission and Control Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China

2. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract

The multiway valve is the core control element of the hydraulic system in construction machinery, such as excavators. Its complex internal structure, especially the flow channels, significantly impacts the machine’s efficiency and reliability. This study focuses on the boom flow channel of excavator multiway valves and establishes a multi-physical field coupling simulation model. We propose six key flow channel structural parameters and analyze changes in the valve’s flow field, temperature field, and structural field using orthogonal test simulation data. The range analysis method identifies the primary and secondary influences of structural parameters on pressure loss, temperature, stress, and strain. A multi-objective optimization model was developed using a neural network and the Non-dominated Sorting Genetic Algorithm II(NSGA-II), with pressure loss and maximum stress as the optimization objectives. The Pareto front solution set for key flow channel parameters was calculated. The optimization results showed a 9.0% reduction in pressure loss and a 40.7% reduction in maximum stress. A test bench verified the simulation model, achieving prediction accuracies of 94.8% for pressure loss in the inlet area and 92.3% in the return area. This method can provide a reference for the optimal design of the dynamic characteristics of high-pressure multiway valves.

Funder

Science and Technology Project of Hebei Education Department of China

Hebei Province Central Leading Local Science and Technology Development Fund Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3