Data-Driven Exhaust Gas Temperature Baseline Predictions for Aeroengine Based on Machine Learning Algorithms

Author:

Wang Zepeng,Zhao YongjunORCID

Abstract

The exhaust gas temperature (EGT) baseline of an aeroengine is key to accurately analyzing engine health, formulating maintenance decisions and ensuring flight safety. However, due to the complex performance characteristics of aeroengine and the constraints of many external factors, it is difficult to obtain accurate non-linear features between various operating factors and EGT. In order to diagnose and forecast aeroengine performance quickly and accurately, four data-driven baseline prediction frameworks for EGT are proposed. These baseline frameworks took engine operating conditions and operating state control parameters as input variables and EGT as predicted output variables. The original data were collected from CFM56-5B engine ACARS flight data. Four typical machine learning methods, including Generalized Regression Neural Network (GRNN), Radial Basis Neural Network (RBF), Support Vector Regression (SVR) and Random Forest (RF) are trained to develop the models. Four aeroengine EGT baseline models were validated by comparing the after-flight data of another engine. The results show that the developed GRNN models have the best accuracy and computational efficiency compared with other models, and their RE and CPU calculation time on the verification set are 1.132 × 10−3 and 3.512 × 10−3 s, respectively. The developed baseline prediction frameworks can meet the needs of practical engineering applications for airlines. The methodologies developed can be employed by airlines to predict the EGT baseline for the purpose of engine performance monitoring and health management.

Funder

Fudan University

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3