Flight Anomaly Detection via a Deep Hybrid Model

Author:

Qin Kun,Wang Qixin,Lu BinbinORCID,Sun Huabo,Shu Ping

Abstract

In the civil aviation industry, security risk management has shifted from post-accident investigations and analyses to pre-accident warnings in an attempt to reduce flight risks by identifying currently untracked flight events and their trends and effectively preventing risks before they occur. The use of flight monitoring data for flight anomaly detection is effective in discovering unknown and potential flight incidents. In this paper, we propose a time-feature attention mechanism and construct a deep hybrid model for flight anomaly detection. The hybrid model combines a time-feature attention-based convolutional autoencoder with the HDBSCAN clustering algorithm, where the autoencoder is constructed and trained to extract flight features while the HDBSCAN works as an anomaly detector. Quick access record (QAR) flight data containing information of aircraft landing at Kunming Changshui International and Chengdu Shuangliu International airports are used as the experimental data, and the results show that (1) the time-feature-based convolutional autoencoder proposed in this paper can better extract the flight features and further discover the different landing patterns; (2) in the representation space of the flights, anomalous flight objects are better separated from normal objects to provide a quality database for subsequent anomaly detection; and (3) the discovered flight patterns are consistent with those at the airports, resulting in anomalies that could be interpreted with the corresponding pattern. Moreover, several examples of anomalous flights at each airport are presented to analyze the characteristics of anomalies.

Funder

National Natural Science Foundation of China

Key Laboratory of National Geographic Census and Monitoring, Ministry of Nature Resources

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference59 articles.

1. Unsupervised Anomaly Detection in Flight Data Using Convolutional Variational Auto-Encoder

2. Aerodynamic modeling and parameter estimation from QAR data of an airplane approaching a high-altitude airport;Qing;Chin. J. Aeronaut.,2012

3. Outlier detection: A survey;Chandola;ACM Comput. Surv.,2007

4. Identification of Outliers;Hawkins,1980

5. Multiple kernel learning, conic duality, and the SMO algorithm;Bach;Proceedings of the Twenty-First International Conference on Machine Learning,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3