The Exact Solution of the Bending Moment in the Folding Process of Negative Poisson’s Ratio Honeycomb Tape Spring and Multi-Objective Optimization Design

Author:

Yang Yang12,Wang Fan12ORCID,Liu Jieshan12ORCID

Affiliation:

1. School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China

2. Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, Guangzhou 510632, China

Abstract

The tape spring is a crucial component used in the deployment mechanism of spacecraft, and the lightweight design of the deployment mechanism is currently one of the critical issues that need to be addressed. This paper explores the substitution effect of two different negative Poisson’s ratio honeycomb-corrugated spring structures for use in space-deployable structures. Theoretical and finite element methods demonstrated that the negative Poisson’s ratio honeycomb structure could be equivalent to an orthotropic structure. The cylindrical shell bending theory was adopted, taking into account the nonlinearity of the geometric equation, the influence of cross-sectional deformation and cross-sectional position on the internal force expression, and the influence of the geometric equation to derive expressions for the bending moment and curvature radius during the folding and bending process. Numerical methods were used for comparative analysis. The NSGA-II algorithm optimized the geometric parameters of the negative Poisson’s ratio honeycomb, resulting in the optimal solution under given constraints. The results showed that the Auxetic re-entrant honeycomb structure performed better in bending moment capacity than the Star-shaped honeycomb, and the bending moment capacity of the Auxetic re-entrant honeycomb structure per unit mass was superior to that of the traditional tape spring.

Funder

Key Laboratory of Disaster Forecast and Control in Engineering (Jinan University), MOE of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3