Real-Time Fuel Optimization and Guidance for Spacecraft Rendezvous and Docking

Author:

Oumer Ahmed Mehamed,Kim Dae-Kwan

Abstract

Autonomous rendezvous and docking (RVD) fuel optimization with field-of-view and obstacle avoidance constraints is a nonlinear and nonconvex optimization problem, making it computationally intensive for onboard computation on CubeSats. This paper proposes an RVD fuel optimization and guidance technique suitable for onboard computation on CubeSats, considering the shape, size and computational limitations of CubeSats. The computation time is reduced by dividing the guidance problem into separate orbit and attitude guidance problems, formulating the orbit guidance problem as a convex optimization problem by considering the CubeSat shape, and then solving the orbit guidance problem with a convex optimization solver and the attitude guidance problem analytically by exploiting the attitude geometry. The performance of the proposed guidance method is demonstrated through simulations, and the results are compared with those of conventional methods that perform orbit guidance optimization with attitude quaternion feedback control. The proposed method shows better performance, in terms of fuel efficiency, than conventional methods.

Funder

Korea Aerospace Research Institute

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3