Research on Space Operation Control of Air Float Satellite Simulator Based on Constraints Aware Particle Filtering-Nonlinear Model Predictive Control

Author:

Xu Lingfeng12,Chen Danhe12ORCID,Wang Chuangge12,Liao Wenhe12

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China

2. Key Laboratory of Special Engine Technology, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

This paper addresses the challenges of close proximity operations, such as rendezvous, docking, and fly-around maneuvers for micro/nano satellites, which require high control precision under the low power and limited computational capabilities of spacecraft. Firstly, a three-degree-of-freedom air float simulator platform is designed for ground-based experiments. Subsequently, model predictive controllers based on constraints aware of particle filtering (CAPF-NMPC) are developed for executing operations such as approach, fly-around, and docking maneuvers. The results validate the effectiveness of the experimental system, demonstrating position control accuracy less than 0.03 m and attitude control accuracy less than 3°, maintaining lower computational resource consumption. This study offers a practical solution for the onboard deployment of optimized control algorithms, highlighting significant value for further engineering applications.

Funder

key laboratory of space intelligent control technology stability

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3