The Investigation of Plume-Regolith Interaction and Dust Dispersal during Chang’E-5 Descent Stage

Author:

Zhang HaiyanORCID,Li CunhuiORCID,You Jilin,Zhang XiaopingORCID,Wang Yi,Chen Liping,Fu Qingfei,Zhang Baogui,Wang Yuming

Abstract

The plume-surface interaction that occurs as a result of a variable-thrust engine exhaust plume impinging on soil during landings is critical for future lunar mission design. Unique lunar environmental properties, such as low gravity, high vacuum, and the regolith layer, make this study complex and challenging. In this paper, we build a reliable simulation model, with constraints based on landing photos, to characterize the erosion properties induced by a low-thrust engine plume. We focus on the low-thrust plume-surface erosion process and erosion properties during the Chang’E-5 mission, aiming to determine the erosion difference between high- and low-thrust conditions; this is a major concern, as the erosion process for a low-thrust lunar mission is rarely studied. First, to identify the entire erosion process and its relative effect on the flat lunar surface, a one-to-one rocket nozzle simulation model is built; ground experimental results are utilized to verify the simulated inlet parameters of the vacuum plume flow field. Following that, plume flow is considered using the finite volume method, and the Roberts erosion model, based on excess shear stress, is adopted to describe plume-surface interaction properties. Finally, a Lagrangian framework using the discrete phase model is selected to investigate the dynamic properties of lunar dust particles. Results show that erosion depth, total ejected mass, and the maximum particle incline angle during the Chang’E-5 landing period are approximately 0.2 cm, 335.95 kg, and 4.16°, respectively. These results are not only useful for the Chang’E-5 lunar sample analysis, but also for future lunar mission design.

Funder

the Science and Technology on Vacuum Technology and Physics

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference37 articles.

1. Lunar Dust Transport and Potential Interactions with Power System Components;Katzan,1991

2. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management;Wagner,2006

3. The survey of Apollo LM during the descent to the lunar surface;Shen;Spacecr. Recovery Remote Sens.,2008

4. Experimental investigation of lunar dust impact wear for different grain sizes and impact angles

5. An Analysis and a Historical Review of the Apollo Program Lunar Module Touchdown Dynamics;Zupp,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3