Numerical simulation of plume–surface interaction and lunar dust dispersion during lunar landing using four engines

Author:

Gao DaORCID,Cai Guobiao,Zhang Huanying,Zhang BaiyiORCID,Liu LihuiORCID,He BijiaoORCID

Abstract

As the lander approaches the lunar surface, the engine plumes impinge on the lunar regolith and entrain lunar dust from the surface. This plume–surface interaction and the resulting dispersion of lunar dust form a multi-physics, multi-scale problem, which becomes even more complex under multi-engine conditions. This study employed the direct simulation Monte Carlo method to simulate the plume–surface interaction flow field of a four-engine lunar lander at various landing altitudes and lunar surface angles. Flow characteristics were analyzed, and the impact of the plume and backflow on the lander was assessed. Subsequently, lunar dust simulation was conducted using the plume field as a basis. The study determined the spatial distribution of particles with different diameters at various landing altitudes and surface angles, as well as their impact velocities on the lander. Furthermore, taking into account the variations in the lander's altitude and attitude, a dynamic simulation of lunar dust during the landing process was conducted. This process resulted in the dynamic distribution of lunar dust during landing, laying the groundwork for real-time simulation of lunar dust distribution and reliable visualization during landing simulations. These findings are valuable for assessing and mitigating the hazards posed by lunar dust.

Publisher

AIP Publishing

Reference52 articles.

1. Lunar exploration: Opening a window into the history and evolution of the inner Solar System;Philos. Trans. R. Soc. A,2014

2. The Artemis program: An overview of NASA's activities to return humans to the moon,2020

3. China's planning for deep space exploration and lunar exploration before 2030;Space Sci.,2018

4. The ESA lunar lander mission,2011

5. Propulsion system for the European lunar lander—development status and breadboarding activities,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3