Application of Deep Reinforcement Learning in Reconfiguration Control of Aircraft Anti-Skid Braking System

Author:

Liu ShuchangORCID,Yang Zhong,Zhang ZhaoORCID,Jiang Runqiang,Ren Tongyang,Jiang Yuan,Chen Shuang,Zhang Xiaokai

Abstract

The aircraft anti-skid braking system (AABS) plays an important role in aircraft taking off, taxiing, and safe landing. In addition to the disturbances from the complex runway environment, potential component faults, such as actuators faults, can also reduce the safety and reliability of AABS. To meet the increasing performance requirements of AABS under fault and disturbance conditions, a novel reconfiguration controller based on linear active disturbance rejection control combined with deep reinforcement learning was proposed in this paper. The proposed controller treated component faults, external perturbations, and measurement noise as the total disturbances. The twin delayed deep deterministic policy gradient algorithm (TD3) was introduced to realize the parameter self-adjustments of both the extended state observer and the state error feedback law. The action space, state space, reward function, and network structure for the algorithm training were properly designed, so that the total disturbances could be estimated and compensated for more accurately. The simulation results validated the environmental adaptability and robustness of the proposed reconfiguration controller.

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3