Intelligent Online Multiconstrained Reentry Guidance Based on Hindsight Experience Replay

Author:

Jiang Qingji1ORCID,Wang Xiaogang1ORCID,Bai Yuliang1ORCID,Li Yu2ORCID

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

2. Beijing Aerospace Technology Institute, Beijing 100074, China

Abstract

Traditional guidance algorithms for hypersonic glide vehicles face the challenge of real-time requirements and robustness to multiple deviations or tasks. In this paper, an intelligent online multiconstrained reentry guidance is proposed to strikingly reduce computational burden and enhance the effectiveness with multiple constraints. First, the simulation environment of reentry including dynamics, multiconstraints, and control variables is built. Different from traditional decoupling methods, the bank angle command including its magnitude and sign is designed as the sole guidance variable. Secondly, a policy neural network is designed to output end-to-end guidance commands. By transforming the reentry process into a Markov Decision Process (MDP), the policy network can be trained by deep reinforcement learning (DRL). To address the sparse reward issue caused by multiconstraints, the improved Hindsight Experience Replay (HER) method is adaptively combined with Deep Deterministic Policy Gradient (DDPG) algorithm by transforming multiconstraints into multigoals. As a result, the novel training algorithm can realize higher utilization of failed data and improve the rate of convergence. Finally, simulations for typical scenes show that the policy network in the proposed guidance can output effective commands in much less time than the traditional method. The guidance is robust to initial bias, different targets, and online aerodynamic deviation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Full-trajectory Design Method for a Waverider Hypersonic Vehicle with Boost-glide-attack Process;2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2023-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3