Radar Anti-Jamming Countermeasures Intelligent Decision-Making: A Partially Observable Markov Decision Process Approach

Author:

Xing Huaixi1,Xing Qinghua1,Wang Kun1

Affiliation:

1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

Abstract

Current electronic warfare jammers and radar countermeasures are characterized by dynamism and uncertainty. This paper focuses on a decision-making framework of radar anti-jamming countermeasures. The characteristics and implementation process of radar intelligent anti-jamming systems are analyzed, and a scheduling method for radar anti-jamming action based on the Partially Observable Markov Process (POMDP) is proposed. The sample-based belief distribution is used to reflect the radar’s cognition of the environment and describes the uncertainty of the recognition of jamming patterns in the belief state space. The belief state of jamming patterns is updated with Bayesian rules. The reward function is used as the evaluation criterion to select the best anti-jamming strategy, so that the radar is in a low threat state as often as possible. Numerical simulation combines the behavioral prior knowledge base of radars and jammers and obtains the behavioral confrontation benefit matrix from the past experience of experts. The radar controls the output according to the POMDP policy, and dynamically performs the best anti-jamming action according to the change of jamming state. The results show that the POMDP anti-jamming policy is better than the conventional policy. The POMDP approach improves the adaptive anti-jamming capability of the radar and can quickly realize the anti-jamming decision to jammers. This work provides some design ideas for the subsequent development of an intelligent radar.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3