Anti-Jamming Communication Using Slotted Cross Q Learning

Author:

Niu Yingtao1ORCID,Zhou Zhanyang1,Pu Ziming1,Wan Boyu2

Affiliation:

1. Sixty-Third Research Institute, National University of Defense Technology, Nanjing 210007, China

2. Fundamentals Department, Air Force Engineering University of PLA, Xi’an 710051, China

Abstract

Most of the existing intelligent anti-jamming communication algorithms model sensing, learning, and transmission as a serial process, and ideally assume that the duration of sensing and learning timeslots is very short, almost negligible. However, when the jamming environment changes rapidly, the sensing and learning time can no longer be ignored, and the adaptability of the wireless communication system to the time-varying jamming environment will be significantly reduced. To solve this problem, this paper proposes a parallel Q-learning (PQL) algorithm. In the case of long sensing and learning time, by modeling sensing, learning, and transmission as parallel processes, the time that the transmitter remains silent during sensing and learning is reduced. Aiming at the situation that the PQL algorithm is susceptible to jamming when the jamming changes faster, this paper proposes an intelligent anti-jamming algorithm for wireless communication based on Slot Cross Q-learning (SCQL). In the case of rapid change of jamming channel, the system can sense and learn the jamming patterns in multiple successive jamming periods at the same time in the same timeslot, and use multiple Q-tables to learn the jamming patterns in different jamming periods, so as to achieve the effect of reliable communication in the environment with rapid change of jamming. The simulation results show that the jamming collision rate of the proposed algorithm under the condition of intelligent blocking jamming is equivalent to that of the traditional Q-learning (QL), but the timeslot utilization rate is higher. Compared with PQL, the proposed algorithm has the same slot utilization and lower jamming collision rate. Compared with random frequency hopping (RFH) anti-jamming, the proposed algorithm not only has higher timeslot utilization, but also has lower jamming collision rate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3