A Simplified FE Modeling Strategy for the Drop Process Simulation Analysis of Light and Small Drone

Author:

Zhang Yongjie,Huang Yingjie,Li Zhiwen,Liang Ke,Cao Kang,Guo Yazhou

Abstract

The numerical accuracy of drop process simulation and collision response for drones is primarily determined by the finite element modeling method and simplified method of drone airframe structure. For light and small drones exhibiting diverse shapes and configurations, mixed materials and structures, deformation and complex destruction behaviors, the way of developing a reasonable and easily achieved high-precision simplified modeling method by ensuring the calculation accuracy and saving the calculation cost has aroused increasing concern in impact dynamics simulation. In the present study, the full-size modeling and simplified modeling methods that are specific to different components of a relatively popular light and small drone were analyzed in an LS-DYNA software environment. First, a full-size high-precision model of the drone was built, and the model accuracy was verified by performing the drop tests at the component level as well as the whole machine level. Subsequently, based on the full-size high-precision model, the property characteristics of the main components of the light and small drone and their common simplification methods were classified, a series of simplified modeling methods for different components were developed, several single simplified models and combined simplified models were built, and a method to assess the calculation error of the peak impact load in the simplified models was proposed. Lastly, by comparing and analyzing the calculation accuracy of various simplified models, the high-precision simplified modeling strategy was formulated, and the suggestions were proposed for the impact dynamics simulation of the light and small drone falling. Given the analysis of the calculation scale and solution time of the simplified model, the high-precision simplified modeling method developed here is capable of noticeably reducing the modeling difficulty, the solution scale and the calculation time while ensuring the calculation accuracy. Moreover, it shows promising applications in several fields (e.g., structure design, strength analysis and impact process simulation of drone).

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3