A Clustering Ensemble Method of Aircraft Trajectory Based on the Similarity Matrix

Author:

Chu XiaoORCID,Tan Xianghua,Zeng WeiliORCID

Abstract

Performing clustering analysis on a large amount of historical trajectory data can obtain information such as frequent flight patterns of aircraft and air traffic flow distribution, which can provide a reference for the revision of standard flight procedures and the optimization of the division of airspace sectors. At present, most trajectory clustering uses a single clustering algorithm. When other processing remains unchanged, it is difficult to improve the clustering effect by using a single clustering method. Therefore, this paper proposes a trajectory clustering ensemble method based on a similarity matrix. Firstly, a stacked autoencoder is used to learn a small number of features that are sufficiently representative of the trajectory and used as the input to the subsequent clustering algorithm. Secondly, each basis cluster is used to cluster the data set, and then a consistent similarity matrix is obtained by using the clustering results of each basis cluster. On this basis, using the deformation of the matrix as the distance matrix between trajectories, the agglomerative hierarchical clustering algorithm is used to ensemble the results of each basis cluster. Taking the Nanjing Lukou Airport terminal area as an example, the experimental results show that integrating multiple basis clusters eliminates the inherent randomness of a single clustering algorithm, and the trajectory clustering results are more robust.

Funder

the National Natural Science Foundation of China

the State Key Laboratory of Air Traffic Management System and Technology

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3