Aerodynamic Characteristics of a Ducted Fan Hovering and Transition in Ground Effect

Author:

Zhao Yanxiong,Tian Yun,Wan Zhiqiang

Abstract

Ducted fans installed on vertical takeoff and landing vehicles experience significant ground effect during takeoff and landing. The aerodynamic characteristics of a ducted fan hovering and transitioning in the ground effect are studied using numerical simulations in this paper. The flowfields are obtained by solving Reynolds Averaged Navier–Stokes equations with the Multiple Reference Frame approach. When a ducted fan hovers in the ground effect, the blade thrust increases due to the combined effect of the increase in the effective angle of attack of the blade and the increase in ambient pressure; the duct thrust decreases due to the combined effect of the decrease in the effective angle of attack of the duct and the increase in ambient pressure. Stall occurs at a certain advance ratio and angle of attack when transitioning in the ground effect. The ground effect delays the occurrence of stall at some advance ratios. The ground effect is hardly detectable at angles of attack less than 30° even if the height drops to 0.5 times the duct exit diameter. At this height and high angles of attack, the different positions and influence regions of the ground vortex at different advance ratios contribute to the different variation trends in the ducted fan performance.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference42 articles.

1. Black, D.M., Wainauski, H.S., and Rohrbach, C. (1968, January 21–24). Shrouded Propellers–A Comprehensive Performance Study. Proceedings of the AIAA 5th Annual Meeting and Technical Display, Philadelphia, PA, USA.

2. Anderson, S.B. (1981). Historical Overview of V/STOL Aircraft Technology, Report No.: NASA-TM-812801;.

3. X-22A Design Development;J. Aircr.,1965

4. (2022, July 12). BELL NEXUS. Available online: https://www.bellflight.com/products/bell-nexus.

5. (2022, July 12). Architectural Performance Assessment of an Electric Vertical Take-off and Landing (e-VTOL) Aircraft Based on a Ducted Vectored Thrust Concept. Available online: https://lilium.com/files/redaktion/refresh_feb2021/investors/Lilium_7-Seater_Paper.pdf.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3