Numerical simulation and analysis of a ducted-fan drone hovering in confined environments

Author:

Luo Yiwei,He Yuhang,Xu Bin,Ai Tianfu,Qian Yuping,Zhang Yangjun

Abstract

AbstractDucted-fan drones are expected to become the main drone configuration in the future due to their high efficiency and minimal noise. When drones operate in confined spaces, significant proximity effects may interfere with the aerodynamic performance and pose challenges to flight safety. This study utilizes computational fluid dynamics simulation with the Unsteady Reynolds-averaged Navier–Stokes (URANS) method to estimate the proximity effects. Through experimental validation, our computational results show that the influence range of proximity effects lies within four rotor radii. The ground effect and the ceiling effect mainly affect thrust properties, while the wall effect mainly affects the lateral force and the pitching moment. In ground effect, the rotor thrust increases exponentially by up to 26% with ground distance compared with that in open space. Minimum duct thrust and total thrust are observed at one rotor radius above the ground. In ceiling effect, all the thrusts rise as the drone approaches the ceiling, and total thrust increases by up to 19%. In wall effect, all the thrusts stay constant. The pitching moment and lateral force rise exponentially with the wall distance. Changes in blade angle of attack and duct pressure distributions can account for the performance change. The results are of great importance to the path planning and flight controller design of ducted-fan drones for safe and efficient operations in confined environments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3