Turbulent Flow Heat Transfer and Thermal Stress Improvement of Gas Turbine Blade Trailing Edge Cooling with Diamond-Type TPMS Structure

Author:

Yeranee Kirttayoth1ORCID,Rao Yu1,Xu Chao1,Zhang Yueliang1ORCID,Su Xiyuan1

Affiliation:

1. Institute of Turbomachinery, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Additive manufacturing allows the fabrication of relatively complex cooling structures, such as triply periodic minimal surface (TPMS), which offers high heat transfer per unit volume. This study shows the turbulent flow heat transfer and thermal stress of the Diamond-TPMS topology in the gas turbine blade trailing edge channel. The thermal-fluid-solid analysis of the Diamond-TPMS structure, made of directionally solidified GTD111, at the nearly realistic gas turbine condition is executed, and the results are compared with the conventional pin fin array at the Reynolds number of 30,000. Compared to the baseline pin fin structure, the Diamond-TPMS model distributes flow characteristics more uniformly throughout the channel. The overall heat transfer enhancement, friction factor ratio, and thermal performance are increased by 145.3%, 200.9%, and 32.5%, respectively. The temperature, displacement, and thermal stress in the Diamond-TPMS model are also distributed more evenly. The average temperature on the external surface in the Diamond-TPMS model is lower than the baseline pin fin array by 19.9%. The Diamond-TPMS network in the wedge-shaped cooling channel helps reduce the volume displacement due to the material thermal expansion by 29.3%. Moreover, the volume-averaged von Mises stress in the Diamond-TPMS structure is decreased by 28.8%.

Funder

Science and Technology Commission of Shanghai Municipality in China

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3